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The motion of a hydrophobic ferrofluid droplet placed in a viscous medium and driven
by an externally applied magnetic field is investigated numerically in an axisymmetric
geometry. Initially, the drop is spherical and placed at a distance away from the
magnet. The governing equations are the Maxwell equations for a non-conducting
flow, momentum equation and incompressibility. A numerical algorithm is derived
to model the interface between a magnetized fluid and a non-magnetic fluid via a
volume-of-fluid framework. A continuum-surface-force formulation is used to model
the interfacial tension force as a body force, and the placement of the liquids is
tracked by a volume fraction function. Three cases are studied. First, where inertia
is dominant, the magnetic Laplace number is varied while the Laplace number is
fixed. Secondly, where inertial effects are negligible, the Laplace number is varied
while the magnetic Laplace number is fixed. In the third case, the magnetic Bond
number and inertial effects are both small, and the magnetic force is of the order of
the viscous drag force. The time taken by the droplet to travel through the medium
and the deformations in the drop are investigated and compared with a previous
experimental study and accompanying simpler model. The transit times are found to
compare more favourably than with the simpler model.

1. Introduction
Ferrofluids consist of magnetic nanoparticles in a colloidal solution. Recent

developments in the synthesis and characterization of ferrofluids are motivated by
biomedical applications (Liu et al. 2007), where the treatment of retinal detachment
is one example (Mefford et al. 2007). A small amount of ferrofluid is injected into
the vitreous cavity of the eye and guided by a permanent magnet inserted outside the
scleral wall of the eye. The drop travels toward the side of the eye, until it can seal a
retinal hole. The time taken for the drop to migrate is an important quantity which
needs to be predicted, and which must be relatively short for the feasibility of this
procedure. A simplified experimental model of this complex system is investigated
in Mefford et al. (2007) with a ferrofluid drop, assumed to be a solid sphere, which
moves through a highly viscous Newtonian fluid that represents the vitreous material
(Nickerson et al. 2005). By treating the sphere as a magnetic particle, the magnetic
force acting on it can be simplified as FM (x) = V M(x)μ0(dH/dx), where V is the
volume of the sphere, M is the magnetization of the ferrofluid droplet, μ0 is the
permeability of vacumm, and dH/dx is the gradient of the magnetic field H with
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respect to the distance x from the permanent magnet. This magnetic force is balanced
with the viscous drag force on the sphere in Stokes flow given by 6πηR0U (x),
to find the expression for U (x). Integrating this over the distance to the magnet,
an approximate time of travel was obtained and then compared with experiments
conducted with a sphere filled with a liquid of viscosity 50 Pa s (sodium hyaluronate
ProviscTM solution commonly used in eye surgery). Their theoretical value was found
to exceed the experimentally measured transit time by roughly 50 %. The authors
noted one phenomenon in their experiments which was not included in their theory:
at larger drop sizes, the shape deformed from a sphere to a teardrop as it accelerated
toward the magnet. Separation of the tail of the teardrop was sometimes observed,
resulting in smaller droplets that take longer to travel to the magnet. Another aspect
of their estimate for the transit time is the use of the drag coefficient for a solid
sphere rather than the viscosity-dependent value for a liquid sphere (Clift, Grace &
Weber 1978). The latter improves the gap between theory and experimental data, but
still leaves significant discrepancies owing to drop deformation and coupled motion
inside the drop.

The understanding of the above process is important for the efficient manipulation
of the procedure. For instance, the size and the shape of the ferrofluid droplet can
influence the motion of the droplet as it travels in a viscous medium. To investigate
the response of a ferrofluid droplet to an applied magnetic field or to the capillary
effects requires a thorough understanding of ferrohydrodynamics in such a system.
The mathematical formulation of the flow of a ferrofluid is described by Rosensweig
(1985). In this paper, we present a methodology for the numerical modelling of
a two-phase system of immiscible fluids, a ferrofluid and a non-magnetic viscous
medium. The magnetic force competes with the interfacial tension force and viscous
drag to deform the drop. Previous numerical studies are limited to equilibrium shapes
of ferrofluid drops (Lavrova et al. 2004, 2006) and interface instabilities (Bashtovoi
et al. 2002; Matthies & Tobiska 2005; Knieling et al. 2007). In all these studies, a
finite-element method was used in which the governing equations of the magnetic
liquid are coupled by the force balance at the interface and the surface tension is
applied as a boundary condition at the interface. Here, we develop a numerical model,
described in § 3, and simulate the field-induced motion of a ferrofluid droplet in a
viscous medium, with results presented in § 4.

In this paper, the drop is assumed axisymmetric and deformable. We assume the
drop size is small compared with the distance to the boundary of the eye. The
magnetic field that is measured in the absence of the drop is used to generate
boundary conditions. We investigate the transit time and drop shapes for a number
of conditions that include those of Mefford et al. (2007).

2. Governing equations
A ferrofluid drop is suspended in a viscous medium that is non-magnetizable, as

shown in figure 1. We assume that upon the placement of the magnet, the drop
is instantly magnetized. The classical equations for the evolution of the two-fluid
system are the Maxwell equations, the incompressible Navier–Stokes equations, and a
constitutive relationship for the magnetic induction B (T), magnetic field H (A m−1),
and magnetization M (A m−1) (Lavrova et al. 2006). In SI units, M = χm H and

B(x, t) =

{
μ1 H in the ferrofluid,

μ0 H in the viscous medium,
(2.1)
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Figure 1. Schematic of the initial configuration. The computational box covers 0 � z � Lz,
0 � r � Lr . Initially, a spherical ferromagnetic drop of radius R is placed a distance L from
the magnet at (r, z) = (0, 0).

where the magnetic permeability of the ferrofluid is μ1 =μ0(1 + χm), and χm is its
magnetic susceptibility. μ0 = 4π × 10−7 N A−2 is the permeability of vacuum, as
well as many other non-ferromagnetic materials. The Maxwell equations for a non-
conducting fluid are ∇ · B =0 and ∇ × H =0. The latter yields a magnetic scalar
potential ψ , where H = ∇ψ . The former yields

∇ · (μ∇ψ) = 0. (2.2)

The permeability is a constant per fluid (except as indicated in § 4.3), and jumps in
value across the interface, so that ψ(x, t) changes as the interface evolves.

The boundary condition on the magnetic field is reconstructed from the
experimental measurements of Mefford et al. (2007). In the absence of the drop,
they measured the magnitude H (z) as a function of distance from the magnet, z, and
fitted the data to a fifth-degree polynomial, as shown in figure 2. The scalar potential
is then a sixth-degree polynomial φ(0, z) = P6(z) along the axis of the cylindrical
domain. In the absence of the drop, φ satisfies Laplace’s equation

1

r

∂

∂r

(
r
∂φ

∂r

)
+

∂2φ

∂z2
= 0.

If there is a solution, it is analytic and has r2-symmetry. The ansatz φ(r, z) =P6(z) +
r2P4(z) + r4P2(z) + r6P0(z) yields

φ(r, z) = P6(z) − 1
4
r2P ′′

6 (z) + 1
64

r4P
(iv)
6 (z) − 1

(36)(64)
r6P

(vi)
6 (z). (2.3)

This yields the boundary condition, and also approximates an initial condition when
the drop is relatively small. The lateral size of the computational domain is chosen
to be sufficiently large so that it is consistent with the assumption that results do not
change if a larger size were used (see § 4.1). These checks were done by calculating
the solution for double the lateral domain size.
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Figure 2. Measured data for the magnetic field from figure 3 of Mefford et al. (2007) (�) and
fifth-degree polynomial fitted to the data (—) as functions of the distance from the magnet.
y = − (3 × 10−5)x5 + 0.0025x4 − 0.0954x3 + 1.7906x2 − 16.99x + 69.605.

The magnetic potential ψ is calculated from (2.2). In axisymmetric cylindrical
coordinates,

1

r

∂

∂r

(
μr

∂ψ

∂r

)
+

∂

∂z

(
μ

∂ψ

∂z

)
= 0 in Ω. (2.4)

where Ω denotes the computational domain. The boundary conditions for ψ on the
domain boundaries ∂Ω are defined as

∂ψ

∂n
=

∂φ

∂n
on ∂Ω, (2.5)

where ∂/∂n= n · ∇, and n denotes the normal to the boundary ∂Ω .
In order to impose the boundary condition in our numerical model, we perform a

transformation of variables to ζ : ψ =φ + ζ , where φ is the potential field without the
magnetic medium. We can then rewrite (2.2) such that

∇ · (μ∇ζ ) = −∇ · (μ∇φ), (2.6)

where ∇ · (μ∇φ) vanishes everywhere except on the surface between the drop and the
surrounding fluid ∂Ωf and

∂ζ

∂n
= 0 on ∂Ω. (2.7)

The well-known Langevin function L(α) = coth α − α−1 is used to describe the
magnetization M = |M| behaviour of the ferrofluid versus the strength of the magnetic
field H:

M(H) = MsL

(
μ0m|H |

kBT

)
H

|H | , (2.8)

where the saturation magnetization Ms and the magnetic moment of the particle
enter as parameters, T denotes the temperature, and kB is the Boltzmann’s constant.
Figure 3 compares M vs. H for the measured data of Mefford et al. (2007) and the
Langevin fit. It is evident that the Langevin function fits the respective experimental
data reasonably well.
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Figure 3. Magnetization behaviour of the ferrofluid containing 7 vol. % of magnetite (Fe3O4)
particles with a mean diameter of 7 nm for figure 3 of Mefford et al. (2007). Measured data
(�) are compared with the Langevin fit (—), assuming each of the magnetite particles has a
total magnetic moment ≈ 2 × 10−19 A m2.

Each liquid is identified with a colour function,

C(r, z, t) =

{
0 in the viscous medium,
1 in the ferrofluid drop,

(2.9)

which advects with the flow. The position of the interface is given by the discontinuities
in the colour function. The fluid equation of motion is

ρ
du
dt

= −∇p + ∇ · ηS + Fs + ∇ · σm, Si,j =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
, (2.10)

where Fs denotes the continuum body force due to interfacial tension,

Fs = γ κ̃nδS, κ̃ = −∇ · n. (2.11)

γ denotes the coefficient of interfacial tension, n = ∇C/|∇C| is the normal to the
interface, δS = |∇C| is the delta-function at the interface, and κ̃ is the curvature. The
viscous stress tensor is ηSi,j where the rate of deformation tensor is Si,j . The magnetic
stress tensor σm is derived in the Appendix to be B HT , so that the equation of
motion becomes

ρ
du
dt

= −∇p + ∇ · ηS + Fs + ∇ · B HT , (2.12)

to be interpreted as a weak formulation.

3. Numerical methodology
In the absence of an initially imposed velocity and gravity, and using the following

normalizations for a drop of initial radius R0,

x∗ = x/R0, t∗ = tη0/
(
ρ0R

2
0

)
, η∗ = η/η0, ρ∗ = ρ/ρ0,

u∗ = uρ0R0/η0, p∗ = pρ0R
2
0

/
(η0)

2, H∗ = H/H0,
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the equation of motion becomes

ρ∗ du∗

dt∗ = −∇∗p∗ + ∇∗ · η∗S∗ + La F∗
s + Lam ∇∗ · σ ∗

m, (3.1)

where the subscript 0 refers to the droplet; i.e. ρ0 and η0 are the ferrofluid density and
viscosity, respectively, and H0 is the characteristic scale of the magnetic field strength.
The Laplace number,

La = γρ0R0/η
2
0, (3.2)

is the ratio of the surface tension to the viscous drag (note that La = 1/(Oh)2 where
Oh is the Ohnesorge number). The magnetic Laplace number (or magnetic Reynolds
number),

Lam = μ0H
2
0 ρ0R

2
0/η

2
0, (3.3)

is the ratio of the magnetic force to inertial force. The ratio of magnetic force to
interfacial tension force is named the magnetic Bond number (Baygents, Rivette &
Stone 1998; Voltairas, Fotiadis & Michalis 2002),

Bom = Lam/La. (3.4)

A volume-of-fluid algorithm on a marker-and-cell (MAC) grid of equidistant mesh
Δ and a computational domain Lr × Lz is used. The discretized colour function gives
the volume fraction of the ferrofluid. The advection of the volume fraction function is
Lagrangian, and the piecewise linear interface reconstruction scheme (PLIC) is used
to calculate the interface position at each time step. The details of the method for
the Navier–Stokes equations are given in Lafaurie et al. (1994), Li & Renardy (1999),
Scardovelli & Zaleski (1999) and Li, Renardy & Renardy (2000) and not repeated
here. Briefly, a provisional velocity field is first predicted and then corrected with the
pressure field that is calculated as a solution of a Poisson problem. Interfacial tension
is discretized using the continuum-surface-force model (Brackbill, Kothe & Zemach
1992). The new aspect is the extension of the algorithm to the ferrofluid.

The magnetic potential field is discretized using second-order central differences and
is computed as a solution of the Poisson problem (2.6). In axisymmetric coordinates,
the discretization of (2.6) at cell (i, j ) yields

∇ · (μ∇ζ )i,j =
1

ri,j

(
ri+1/2,jμi+1/2,j

(
∂ζ

∂r

)
i+1/2,j

− ri−1/2,jμi−1/2,j

(
∂ζ

∂r

)
i−1/2,j

)/
Δ

+

(
μi,j+1/2

(
∂ζ

∂z

)
i,j+1/2

− μi,j−1/2

(
∂ζ

∂z

)
i,j−1/2

)/
Δ, (3.5)

where, for instance for the cell face (i + 1/2, j ),(
∂ζ

∂r

)
i+1/2,j

=
ζi+1,j − ζi,j

Δ
. (3.6)

A weighted harmonic mean interpolation is used to compute μ at cell face (i+1/2, j ):

1

μi+1/2,j

=
1

2

(
1

μi,j

+
1

μi+1,j

)
,
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Figure 4. Location of the velocities and the magnetic stress tensor components on a MAC
grid. Corner values of the magnetic stress tensor components (rz, at �) are calculated from
cell-centre values (•).

where

1

μi,j

=
1 − Ci,j

μ0

+
Ci,j

μ1

,

and the discretized colour function Cij represents the volume fraction of the ferrofluid
in cell (i, j ) (Patankar 1980). Analogous relationships can be written for other faces
of a cell. The right-hand side of (2.6) is discretized similarly. The boundary condition
for cells on the solid boundary is a second-order discretization of a zero gradient
boundary condition for ζ : ∂ζ/∂n =0. A multigrid Poisson solver is then used to
obtain the solution of the resulting linear set of equations.

The spatial discretization of the velocity field is based on the MAC grid in figure 4.
Therefore, the evaluation of the components of the magnetic stress tensor requires
the evaluation of gradients at faces. In axisymmetric coordinates, the divergence of
the magnetic stress tensor is discretized as

er :
1

ri+1/2,j

ri+1,j ((σm)rr )i+1,j − ri,j ((σm)rr )i,j
Δ

+
((σm)rz)i+1/2,j+1/2 − ((σm)rz)i+1/2,j−1/2

Δ

ez :
1

ri,j+1/2

ri+1/2,j+1/2((σm)rz)i+1/2,j+1/2 − ri−1/2,j+1/2((σm)rz)i−1/2,j+1/2

Δ

+
((σm)zz)i,j+1 − ((σm)zz)i,j

Δ
, (3.7)

where the components such as (σm)rr are defined in the Appendix. Second-order
central differences are used to discretize the components of the magnetic stress tensor
at the centre of a cell and a simple averaging from cell-centre values is used to
extrapolate the magnetic stress components to cell corners.

4. Results
Numerical simulations are presented in three parts. Section 4.1 concerns tests of the

numerical implementation by focusing on the resulting magnetic fields and by testing
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Section § 4.2 § 4.2 § 4.3

2R0(mm) 2.5 1 1, 1.8, 2
Lr 1.6R0 4R0 4 mm
Lz 12.8R0 24R0 16 mm
Δ R0/20 R0/12 R0/8, R0/9, R0/10
ρ0 1.32 ρv 1.32 ρv 1320 kg m−3

η0 1.5 ηv 1.5 ηv 80 kg m−1 s−1

ρv 998 kg m−3

ηv 50 kg m−1 s−1

χm 0.25 0.25 *
H0(kA m−1) 1 1 1
La 5.15 0.002, 0.01, 0.04, 0.1, 0.4
Lam 0.3, 1.5, 3.6 0.05
Bom 0.06, 0.3, 0.6, 1.2 24, 5, 1, 0.5, 0.1 0.031, 0.056, 0.063

* The magnetic susceptibility for § 4.3 is computed using the Langevin function.

Table 1. Overview of the sets of simulations presented in § § 4.2–4.3.

for convergence of the solution with grid refinement. Section 4.2 presents a parametric
study, varying Lam for fixed La, and vice versa. Section 4.3 contains the application
of our model to the experimental data of Mefford et al. (2007), and examines the
time taken by the drop to reach the magnet.

Table 1 provides a comprehensive overview of the sets of simulations presented in
the remainder of this section. For § 4.3, the magnetic susceptibility is computed using
the Langevin function via (2.8), and this yields improved agreement with experimental
data over the linear variation defined by a constant χm. The characteristic scale of
the magnetic field strength H0 is taken to be 1 kA m−1 in all the cases in § 4.2, since
this is of the same order as the magnetic field strength which is initially inducted by
the magnet on the droplet placed about 12 mm away from the permanent magnet
(cf. figure 2). Note that the magnetic field strength varies with location and the choice
of a characteristic scale is not straightforward. Thus, as the droplet moves toward the
magnet, the effective magnetic Laplace number increases well beyond our nominal
value.

4.1. Magnetic field and imposed boundary condition

Figure 5 shows a convergence test for the calculated travel times, at different mesh
sizes in units of the initial droplet radius R0. A droplet of radius 1 mm is centred at a
distance 10 mm away from the bottom of the 16 mm × 4 mm domain. The time that is
required for the droplet to reach the bottom of the domain is calculated at different
mesh sizes to demonstrate the spatial convergence of the numerical results. The
magnetic susceptibility used in this case is considered to be constant and χm =0.25.

We demonstrate the effectiveness of our methodology by presenting the results of
the simulated applied magnetic field using the magnetic field boundary condition
(2.3), compared with values measured along the centreline of the domain by Mefford
et al. (2007). Figure 6 shows the computed magnetic field along the centreline of
the 16 mm × 4 mm domain compared with the measured magnetic field generated by
a permanent magnet in the absence of a droplet. The agreement is excellent, and
this also provides a check that the lateral boundary of the computational domain is
sufficiently far away from the drop.
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Figure 5. Calculated transit times at different mesh sizes in units of initial drop radius R0.
Results are shown to be convergent as the mesh is refined. The parameters are those of § 4.3.

In figure 6, the computed magnetic field in the presence of a 2 mm diameter droplet
centred at distances 12 mm, 8 mm and 4 mm from the bottom of the computational
domain are also presented. Comparison of the variation of numerical results of the
magnetic field across the interface is used to check the necessary continuity of B · n.

In figure 7, the magnetic field lines and contour plots of the magnetic field amplitude
are plotted for cases of a 2 mm diameter droplet centred at distances 12 mm, 8 mm
and 4 mm from the bottom of the computational domain. The magnetic field lines
in the viscous medium that is non-magnetizable are distorted in the presence of the
ferrofluid droplet because of having different permeability.

4.2. Variation with La and Lam

Past theoretical studies have shown that microscopic ferrofluid droplets (2–20 μm)
deform to prolate droplets in the direction of the uniform applied magnetic field
(Bacri & Salin 1982). Here we also numerically observe that drops elongate in the
presence of non-uniform magnetic fields. The computational domain is 1.6R0×12.8R0.
A freely suspended ferrofluid droplet of radius R0 (1.25 mm) is initially centred at (0,
10.4R0). The permanent magnet is at the bottom of the domain. At the walls, the
velocities satisfy no slip. Because of symmetry, only half of the domain is simulated.
The mesh size is Δ =R0/20.

The results of the ferrofluid drop elongation upon the magnetic Laplace number
Lam are presented. The value of the magnetic susceptibility is χm = 0.25 and chosen
to be constant during the process. The density ratio is ρdroplet/ρviscous = 1.32 and the
viscosity ratio is ηdroplet/ηsurrounding = 1.5. The Laplace number is La = 5.15. Figure 8
shows droplet shapes for magnetic Laplace numbers Lam = 0.3, 1.5, 3 and 6 at non-
dimensional times τ = tη0/(ρ0R

2
0). These figures show that the increase of the magnetic

field results in a drop elongation in the direction of the applied magnetic field. While
for Lam = 0.3 the shape of the droplet remains almost round for all time (figure 8a),
higher magnetic Laplace numbers result in a dramatic deviation from round shapes
to further elongated shapes forming columnar configurations. Figure 8 shows that
increase of the magnetic Laplace number Lam results in a continuous drop prolation
accompanied by a deformation from a round shape to a tear-drop shape. At the
highest magnetic Laplace number (figure 8d), small surface undulations begin to
appear on the flat sides of the front of the droplet.
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Figure 6. Distribution of the magnetic field (kAm−1) along the centreline of the
computational domain. The computed magnetic field along the centreline of the domain
in the absence of the drop (-) is compared with the measured magnetic field generated
by a permanent magnet (�) from Mefford et al. (2007). The computed magnetic field in the
presence of a 2 mm droplet (—) is superposed when the droplet is placed at distances (a) 12 mm,
(b) 8 mm and (c) 4 mm from the magnet, respectively. χm =1.

Figure 9 depicts velocity fields at τ =560, 15, 3.3 and 1 corresponding to Lam = 0.3,
1.5, 3 and 6, respectively. The motion of the droplet is a function of the variation
of the magnetic field within the droplet, i.e. the front of the droplet feels a higher
magnetic force than the back of the droplet. This effect can be observed from velocity
fields in figures 9(b) to 9(d) where the portion of the droplet closer to the magnet
accelerates much faster towards the magnet rather than the section at the back of the
droplet.

Ferrofluid drops with different interfacial tension energies deform differently under
an applied magnetic field. A lower surface tension can result in the deviation from a
round shape to a prolate ellipsoid structure which can consequently lead to a higher
droplet velocity. A freely suspended ferrofluid droplet of radius R0 (0.5 mm) is initially
centred at (0, 20R0). The permanent magnet is at the bottom of the domain. At the
walls, the velocities satisfy no slip. Because of symmetry, only half of the domain is
simulated. The mesh size is Δ =R0/12, and the computational domain is 4R0 × 24R0.
Figure 10 plots the calculated transit times for Laplace numbers La = 0.002, 0.01,
0.04, 0.1 and 0.4 for fixed Lam =0.05. It is evident that the velocity of the droplet
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Figure 7. Magnetic field lines (left) and contours of the magnetic field amplitude (kAm−1,
right) in the presence of a ferrofluid droplet in a non-magnetizable medium. A droplet of
diameter 2 mm is centred at distances (a) 12 mm, (b) 8 mm and (c) 4 mm above the bottom of
the computational domain. χm = 1.

varies as a function of the Laplace number for low inertia. A lower surface tension
alters the shape of the droplet which accounts for the variation in the velocity of the
droplet.

In figure 11, the motion of ferrofluid droplets are shown at different Laplace
numbers at non-dimensional times τ . At low Laplace numbers, the round droplet
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Figure 8. Droplet shapes at different magnetic Laplace numbers, at fixed La = 5.15:
(a) Lam = 0.3, τ =0, 410, 500, 560; (b) Lam =1.5, τ = 0, 7.5, 11.2, 15; (c) Lam =3, τ = 0, 1.9,
2.6, 3.3; (d) Lam = 6, τ = 0, 0.6, 0.9, 1. The magnetic Bond numbers are Bom = (a) 0.06, (b) 0.3,
(c) 0.6, (d) 1.2.

deforms in the direction of the applied magnetic field forming a prolate shape which
in turn influences the motion of the droplet. In figures 8 and 9, the magnetic Bond
number varies from 0.06 to 1.2 with increase in Lam, and results in highly deformed
drops for the higher Bom. Similarly, though at lower inertia, figure 11 shows that
as the Laplace number varies from 0.002 to 0.4, Bom decreases from 24 to 0.1, and
drop deformation decreases. Hence, at both order 1 inertia and small inertia, the drop
deforms more for higher Bom, where the effect of magnetic force is more important
than interfacial tension force.

When increasing the magnetic Laplace number, the differential between the force
at the front of the drop to that at the rear becomes more pronounced and may
become strong enough to overcome the tendency of surface tension to keep the drop
round. Conversely, when keeping the magnetic Laplace number constant but varying
the Laplace number, the ratio of the magnetic effect to the surface tension effect
becomes more favourable as the Laplace number becomes small, and the fact that
the strength of the magnetic force is differentially higher at the front becomes more
important. Note that a comparison of figures 8 and 11 shows quite different drop
shapes for comparable magnetic Bond numbers. Hence, the evolution of drop shapes
is dependent on both the magnetic Laplace number and the Laplace number.

4.3. Simulation for the parameters of Mefford et al. (2007)

The simulation results of the magnetic field-induced motion of PDMS ferrofluid
droplets in a viscous medium are presented. The diameter and initial position of
the ferrofluid drop are varied. At the walls, the velocities satisfy no slip. Because of
symmetry, only half of the domain is simulated.

A series of computations are performed to calculate the time taken by the ferrofluid
droplet through the viscous medium until the magnet is reached. The droplet models
a PDMS ferrofluid, with density 1320 kg m−3, and viscosity 80 Pa s. The interfacial



Motion of ferrofluid droplets 375

1 20 1 20 1 20 1 20

10

16
(a) (b) (c) (d)

10

16

10

16

10

16

Figure 9. Velocity fields at different magnetic Laplace numbers with fixed La =5.15: (a)
Lam = 0.3, τ = 325, (b) Lam =1.5, τ =15, (c) Lam = 3, τ = 3.3, (d) Lam = 6, τ = 1. The magnetic
Bond numbers are Bom = (a) 0.06, (b) 0.3, (c) 0.6, (d) 1.2.
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Figure 10. Calculated transit times at Laplace numbers ranging from 0.002 to 0.4,
corresponding to magnetic Bond numbers from 24 down to 0.1, respectively, with fixed
Lam = 0.05. The velocity of the droplet increases as a result of decreasing the Laplace number.
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Figure 11. Droplet shapes at different Laplace numbers with fixed Lam = 0.05: (a)
La =0.002, τ = 0, 75, 112.5, 131.9, (b) La = 0.01, τ = 0, 75, 112.5, 133.2, (c) La = 0.04, τ =
0, 75, 112.5, 131.2, 138.7, (d) La =0.1, τ = 0, 75, 112.5, 131.2, 138.7, 142.5, (e) La = 0.4,
τ = 0, 75, 112.5, 131.2, 138.7, 142.5, 145.2. The magnetic Bond numbers are Bom = (a) 24, (b)
5, (c) 1, (d) 0.5, (e) 0.1.

Droplet Distance from Simulation Experimental
diameter (mm) magnet (mm) time (s) time (s)

1.0 12 960 900
1.8 12 270 240
2.0 11 170 150

Table 2. Comparison of numerical and experimental (Mefford et al. 2007) travel times for
varying droplet sizes, initially at various distances from the magnet.

tension is estimated at 0.02 Nm−1. The viscous medium with density of 998 kgm−3

and viscosity of 50 Pa s models the viscous humour in the eye.
We calculate the travel times for drop diameters 2 mm, 1.8 mm and 1 mm, positioned

at distances 11 mm, 12 mm and 12 mm away from the bottom of the domain,
respectively. The magnetic Laplace number is of the order of 10−7, so that inertia
is not important. Moreover, numerical results are checked to be independent of Lam

in the asymptotic range Lam � 1 even when Lam is taken to be of order 0.1. Since
the time step required for accuracy in the numerical simulations is less restrictive
for larger Lam, an optimal value is found to minimize the total computational time.
The parameter that influences drop shape is the ratio of magnetic force to interfacial
tension force given by the magnetic Bond number, ranging from 0.03 to 0.06. The
experimental data of Mefford et al. (2007) is fitted with a Langevin function to
describe the magnetization versus the magnetic field. For the first and second cases,
the mesh size is set to Δ =0.1 mm and the time step is Δt = 0.001 s. For the third
case, the mesh size is set to Δ =0.0625 mm and the time step is Δt = 0.0005 s. Table 2
shows that the computed travel times predict the experimentally observed values well.
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Figure 12. Droplet shapes for different diameter droplets positioned at various distances away
from the bottom of the domain and driven by a magnetic field through a viscous medium
with a viscosity of 50 Pa s. (a) A 2 mm diameter droplet placed 11mm away from the bottom
of the domain, (b) a 1.8 mm droplet placed 12 mm away from the bottom of the domain, and
(c) a 1 mm droplet placed 12 mm away from the bottom of the domain. The magnetic Bond
numbers are Bom = (a) 0.063, (b) 0.056, (c) 0.03.

Figure 12 shows the shape of the droplet as it travels through the viscous medium.
As expected, higher velocities are computed for larger droplets and the travel time
increases significantly for droplets placed further away from the magnet compared
to a droplet placed closer. Also, a larger droplet deforms from a sphere to an oval
as it approaches the magnet. This illustrates how the magnetic field gradient in
the domain contributes to the deformation of the droplet, since the front of the
droplet experiences a greater magnetic force in comparison to the back of the droplet.
However, the shape of the smaller droplets remains nearly circular at all times except
when they are about to hit the solid surface. Also, the deformation of the 1 mm
diameter droplet (figure 12c) is less dramatic when it is close to hitting the target,
which is due to higher surface tension effects and a decrease of the droplet velocity.
These results are typical of the behaviour at low magnetic Bond numbers.

Figure 13 shows the velocity fields at times t = 120, 160 and 170 s for a droplet
of 2 mm diameter placed 11 mm away from the bottom of the domain. This figure
provides further details on the motion of the droplet. The velocity fields clearly
demonstrate the following stages in drop evolution: at an early stage, the flow occurs
approximately downwards and only in the region close to the droplet. A vortical
flow in the viscous medium forms in front of the droplet. As the droplet approaches
the magnet, these vortices induced in the viscous medium become stronger. When
the droplet reaches the bottom of the domain, the vortices move towards the top
of the droplet. At this stage, the flow inside the droplet is pumped outward from the
centre of the droplet and results in the flattening of the droplet and consequently a
decrease in the droplet height.
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Figure 13. Velocity fields at times t = 120, 160 and 170 s (from left to right) for a droplet of
2 mm diameter placed 11 mm away from the bottom of the domain. Bom = 0.06.

5. Conclusions
We present a derivation for a model and numerical method to simulate the fluid

motion coupled with the magnetic field and associated interfacial tension force in
the flow of a ferrofluid droplet through a viscous medium under the influence of
an externally applied magnetic field. The ferrohydrodynamic equations and a simple
constitutive law are used to model the magnetic force acting at the interface. The
numerical boundary condition for the simulation of the magnetic field is based
upon measured values at the centreline of the domain in the absence of the drop.
A conservative representation of the magnetic field force for immiscible two-fluid
systems is derived.

The droplet undergoes dramatic deformation owing to the presence of an external
magnetic field gradient. Its shape is influenced by the magnetic Bond number, as well
as inertia. The simulations show that the droplet velocity is mainly influenced by the
competition between the magnetic force which is proportional to the volume, and the
viscous drag force which is proportional to the radius. Hence, the larger the drop,
the faster the speed. The initial distance between the ferrofluid droplet and the external
magnet is varied, and the simulated transit times agree well with the experimental
measurements of Mefford et al. (2007). Our study shows that the deformation of the
drop accounts for the difference in the transit times between prior models based on
a spherical drop and the experimental data.

This research is supported by NSF-DMS 0405810, NCSA TG-CTS060013N and
NSF-ARC Materials World Network for the Study of Macromolecular Ferrofluids
(DMR-0602932 -LX0668968). We thank O. T. Mefford for discussions and data, and
the referee who provided extensive comments for improvement.
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Appendix
The force acting on a magnetic particle of magnetic moment m is μ0(m · ∇)H

(Rosensweig 1985). For a magnetized body, this leads to a force density

F = μ0(M · ∇)H . (A 1)

This expression for the magnetic force, however, is not meaningful in the presence
of an interface where both M and H have discontinuities. We therefore use the
alternative form

F = ((B − μ0 H) · ∇)H = (B · ∇)H − μ0(H · ∇)H . (A 2)

Taking account of Maxwell’s equations div B = 0 and curl H = 0, we find

F = div
(

H BT
)

− 1
2
μ0∇|H |2. (A 3)

This conservative form remains meaningful in the presence of discontinuous interfaces.
We now set σm = H BT . The second term, −(1/2)μ0∇|H |2 is proportional to the
identity matrix, and is absorbed into the pressure field for the entire domain. This
does not alter the interfacial force balance because it is implicitly consistent with the
weak formulation which is discretized.

In axisymmetric coordinates the magnetic stress tensor is

σm = μ

⎡
⎢⎢⎢⎢⎢⎣

(
∂φ

∂r

)2
∂φ

∂r

∂φ

∂z
0
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∂z

(
∂φ

∂z

)2

0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (A 4)

and

∇ · σm =

[
1

r

∂

∂r
[r(σm)rr ] +

∂

∂z
[(σm)rz]

]
er +

[
1
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∂
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[r(σm)rz] +

∂
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[(σm)zz]

]
ez, (A 5)

where er and ez are unit vectors in r and z directions.
In the momentum equation (2.12), the rate of deformation tensor in axisymmetric

coordinates is

Si,j =

⎡
⎢⎢⎢⎢⎢⎢⎣

2
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∂vr
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, (A 6)

and

∇ · ηS =

[
1

r

∂

∂r
(rηSrr ) +

∂

∂z
ηSrz − 1

r
ηSθθ

]
er +

[
1

r

∂

∂r
(rηSrz) +

∂

∂z
ηSzz

]
ez. (A 7)
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